
Pattern MatchingPattern Matching

Pattern Matching / Slide 2

Pattern MatchingPattern Matching
Given a text string T[0..n-1] and a pattern g [] p
P[0..m-1], find all occurrences of the pattern
within the text.

Example: T = 000010001010001 and P =
0001:

first occurrence starts at T[1].
d T[5]second occurrence starts at T[5].

third occurrence starts at T[11].

Pattern Matching / Slide 3

Naïve algorithmNaïve algorithm

Worst-case running time = O(nm).

Pattern Matching / Slide 4

Can we do it better?Can we do it better?
The naïve algo is O(mn) in the worst case

But we do have linear algorithm (optional):
Boyer-Moore
Knuth-Morris-Pratt
Finite automata

Using idea of ‘hashing’! Robin-Karp algorithm

Pattern Matching / Slide 5

Boyer-Moore AlgorithmBoyer Moore Algorithm
Basic idea is simple.

We match the pattern P against substrings in the text
t i T f i ht t l ftstring T from right to left.

We align the pattern with the beginning of the textWe align the pattern with the beginning of the text
string. Compare the characters starting from the
rightmost character of the pattern. If fail, shift the

tt t th i ht b h f ?pattern to the right, by how far?

Pattern Matching / Slide 6

Rabin-Karp AlgorithmRabin Karp Algorithm
Key idea: y

Think of the pattern P[0..m-1] as a key, transform it
into an equivalent integer p.
Similarly, we transform substrings in the text string
T[] into integers.

For s=0,1,…,n-m, transform T[s..s+m-1] to an equivalent 0, , , , [] q
integer ts.

The pattern occurs at position s if and only if p=ts.
If d i kl h hIf we compute p and ts quickly, then the
pattern matching problem is reduced to
comparing p with n m+1 integerscomparing p with n-m+1 integers.

Pattern Matching / Slide 7

Rabin-Karp AlgorithmRabin Karp Algorithm
How to compute p?p p
p = 2m-1 P[0] + 2m-2 P[1] + … + 2 P[m-2] + P[m-1]

Using Horner’s rule

This takes O(m) time, assuming each arithmetic operation
can be done in O(1) time.

Pattern Matching / Slide 8

Rabin-Karp AlgorithmRabin Karp Algorithm
Similarly, to compute the (n-m+1) integers ts from the
t t t itext string.

This takes O((n – m + 1) m) time, assuming that each
arithmetic operation can be done in O(1) time.
This is a bit time-consuming.

Pattern Matching / Slide 9

Rabin-Karp AlgorithmRabin Karp Algorithm
A better method to compute the integers incrementally
using previous result:

compute offset = 2m

Horner’s rule to compute t0Horner s rule to compute t0

tS-1 tS

This takes O(n+m) time, assuming that each arithmetic
operation can be done in O(1) time.

Pattern Matching / Slide 10

ProblemProblem
The problem with the previous strategy is that when m
is large, it is unreasonable to assume that each
arithmetic operation can be done in O(1) time.

In fact given a very long integer we may not even be able toIn fact, given a very long integer, we may not even be able to
use the default integer type to represent it.

Therefore, we will use modulo arithmetic. Let q be a
prime number so that 2q can be stored in one
computer word. p

This makes sure that all computations can be done using
single-precision arithmetic.

Pattern Matching / Slide 11

Compute equivalent integer for pattern
O(m)O(m)

O(n+m)

Pattern Matching / Slide 12

Once we use the modulo arithmetic, when p=ts for
some s, we can no longer be sure that P[0 .. m-1] is
equal to T[s .. s+ m -1].

Therefore, after the equality test p = ts, we should
compare P[0..m-1] with T[s..s+m-1] character by
character to ensure that we really have a match.

S th t i ti b O() b t itSo the worst-case running time becomes O(nm), but it
avoids a lot of unnecessary string matchings in
practice.p

Pattern Matching / Slide 13

A spell checker
with hashing

Start by reading in words from a dictionary file named dictionary. The words in this dictionary
file will be listed one per line, sorted alphabetically. Store each word in a hash table, using
chaining to resolve collisions. Start with a table size of roughly 4K entries (the table size should
b i) If h h t l t bl i t k th l d f t l th 1 0be prime). If necessary, rehash to a larger table size to keep the load factor less than 1.0.

After hashing each word in the dictionary file, read in the user-specified text file and check it for
spelling errors by looking up each word in the hash table. A word is defined as a string of letters
(possibly containing single quotes) separated by white space and/or punctuation marks If a word(possibly containing single quotes), separated by white space and/or punctuation marks. If a word
cannot be found in the hash table, it represents a possible misspelling.

