Pattern Matching

Pattern Matching

® Given a text string $T[0 . . n-1]$ and a pattern P[0..m-1], find all occurrences of the pattern within the text.

■Example: $T=000010001010001$ and $P=$ 0001:

- first occurrence starts at T[1].
- second occurrence starts at T[5].
- third occurrence starts at T[11].

Naïve algorithm

$$
\begin{aligned}
& \text { for }(\mathrm{s}=0 ; \mathrm{s}<=\mathrm{n}-\mathrm{m} ; \mathrm{s}++ \text {) } \\
& \quad \text { if } \mathrm{P}[0 . \mathrm{m}-1] \text { equal to } \mathrm{T}[\mathrm{~s} . \mathrm{s}+\mathrm{m}-1] \\
& \\
& \quad \text { output } \mathrm{s} ;
\end{aligned}
$$

Example:
T 0000001000010100001
$s=0$

$$
0001
$$

*mismatch
$\mathrm{s}=1$
0001
"match
$s=2$
0001
"mismatch
$s=3$

> 0001 amismatch

Worst-case running time $=\mathbf{O}(\mathrm{nm})$.
^mismatch

Can we do it better?

© The naïve algo is $\mathrm{O}(\mathrm{mn})$ in the worst case

- But we do have linear algorithm (optional):
- Boyer-Moore
- Knuth-Morris-Pratt
- Finite automata
- Using idea of 'hashing'! Robin-Karp algorithm

Boyer-Moore Algorithm

- Basic idea is simple.
- We match the pattern P against substrings in the text string T from right to left.
$\boxed{\text { We align the pattern with the beginning of the text }}$ string. Compare the characters starting from the rightmost character of the pattern. If fail, shift the pattern to the right, by how far?

Rabin-Karp Algorithm

■Key idea:

- Think of the pattern P[0..m-1] as a key, transform it into an equivalent integer p.
- Similarly, we transform substrings in the text string T] into integers.
BFor $s=0,1, \ldots, n-m$, transform T[s..s+m-1] to an equivalent integer t_{s}.
- The pattern occurs at position s if and only if $\mathrm{p}=\mathrm{t}_{\mathrm{s}}$.

区If we compute p and t_{s} quickly, then the pattern matching problem is reduced to comparing p with $\mathrm{n}-\mathrm{m}+1$ integers.

Rabin-Karp Algorithm

-How to compute p?

$$
p=2^{m-1} P[0]+2^{m-2} P[1]+\ldots+2 P[m-2]+P[m-1]
$$

-Using Horner's rule

$$
p=P[m-1]+2 *(P[m-2]+2 *(P[m-3]+\ldots 2 *(P[1]+2 * P[0]) \ldots)
$$

$$
\begin{aligned}
& p=0 ; \\
& \text { for }(i=0 ; i<m ; i++) \\
& \quad p=2 * p+P[i]
\end{aligned}
$$

This takes $\mathrm{O}(\mathrm{m})$ time, assuming each arithmetic operation can be done in O(1) time.

Rabin-Karp Algorithm

\boxtimes Similarly, to compute the ($n-m+1$) integers t_{s} from the text string.

$$
\begin{aligned}
& \text { for }(s=0 ; s<=n-m ; s++)\{ \\
& \\
& \quad \mathrm{t}[\mathrm{~s}]=0 ; \\
& \quad \text { for }(i=0 ; i<m ; i++) \\
& \quad t[s]=2 * t[s]+T[s+i] ;
\end{aligned}
$$

® This takes $\mathrm{O}((n-m+1) m)$ time, assuming that each arithmetic operation can be done in $\mathrm{O}(1)$ time.
$\boxed{\text { This is }}$ a bit time-consuming.

Rabin-Karp Algorithm

- A better method to compute the integers incrementally using previous result:

```
t[0] = 0;
offset = 1;
for (i = 0; i < m; i++) compute offset = 2m
    offset = 2*offset;
for (i = 0; i < m; i++) Horner's rule to compute t 
    t[0] = 2*t[0] + T[i];
for (s = 1; s <= n-m; s++)
        t[s] = 2*(t[s-1] - offset*T[s-1]) + T[s+m-1];
```


This takes $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time, assuming that each arithmetic operation can be done in $\mathrm{O}(1)$ time.

Problem

\triangle The problem with the previous strategy is that when m is large, it is unreasonable to assume that each arithmetic operation can be done in O(1) time.

- In fact, given a very long integer, we may not even be able to use the default integer type to represent it.
© Therefore, we will use modulo arithmetic. Let q be a prime number so that $2 q$ can be stored in one computer word.
- This makes sure that all computations can be done using single-precision arithmetic.

```
    \(\mathrm{p}=0\);
O(m) for (i = 0; i < m; i++)
        \(p=(2 * p+P[i]) \% q ;\)
        \(t[0]=0\);
        offset = 1;
        for (i = 0; \(i<m ; i++\) )
\(\mathrm{O}(\mathrm{n}+\mathrm{m}) \quad\) offset \(=2 *\) offset \(\% \mathrm{q}\);
    for (i \(=0\); \(i<m ; i++\) )
        \(\mathrm{t}[0]=(2 * \mathrm{t}[0]+\mathrm{T}[\mathrm{i}]) \% \mathrm{q}\);
    for ( \(s=1 ; s<=n-m ; s++\) )
        \(\mathrm{t}[\mathrm{s}]=(2 *(\mathrm{t}[\mathrm{s}-1]-\mathrm{offset} * \mathrm{~T}[\mathrm{~s}-1])+\mathrm{T}[\mathrm{s}+\mathrm{m}-1]) \% \mathrm{q} ;\)
```

\triangle Once we use the modulo arithmetic, when $p=t_{s}$ for some s, we can no longer be sure that $\mathrm{P}[0$.. $\mathrm{m}-1]$ is equal to $\mathrm{T}[\mathrm{s} . . \mathrm{s}+\mathrm{m}-1$].
© Therefore, after the equality test $\mathrm{p}=\mathrm{t}_{\mathrm{s}}$, we should compare P[0..m-1] with T[s..s+m-1] character by character to ensure that we really have a match.
$\boxed{\text { So }}$ the worst-case running time becomes $\mathrm{O}(\mathrm{nm})$, but it avoids a lot of unnecessary string matchings in practice.

A spell checker with hashing

Start by reading in words from a dictionary file named dictionary. The words in this dictionary file will be listed one per line, sorted alphabetically. Store each word in a hash table, using chaining to resolve collisions. Start with a table size of roughly 4 K entries (the table size should be prime). If necessary, rehash to a larger table size to keep the load factor less than 1.0.

After hashing each word in the dictionary file, read in the user-specified text file and check it for spelling errors by looking up each word in the hash table. A word is defined as a string of letters (possibly containing single quotes), separated by white space and/or punctuation marks. If a word cannot be found in the hash table, it represents a possible misspelling.

